量子物理学解析(1 / 2)

加入书签

量子物理学,是为描述远离我们的日常生活经验的抽象原子世界而创立的,但它对日常生活的影响无比巨大。没有量子力学作为工具,就不可能有化学、生物、医学以及其他每一个关键学科的引人入胜的进展。没有量子力学就没有全球经济可言,因为作为量子力学的产物的电子学革命将我们带入了计算机时代。同时,光子学的革命也将我们带入信息时代。量子物理的杰作改变了我们的世界,科学革命为这个世界带来了的福音,也带来了潜在的威胁。

量子物理学是人们研究微观世界的理论,也有人称为研究量子现象的物理学。由于宏观物体是由微观世界建构而成的,因此量子物理学不仅是研究微观世界结构的工具,而且在深入研究宏观物体的微结构和特殊的物理性质中也发挥着巨大作用。我们把科学家们在研究原子、分子、原子核、基本粒子时所观察到的关于微观世界的系列特殊的物理现象称为量子现象。

量子世界除了其线度极其微小之外(10-10~10-15m量级),另一个主要特征是它们所涉及的许多宏观世界所对应的物理量往往不能取连续变化的值,(如:坐标、动量、能量、角动量、自旋),甚至取值不确定。许多实验事实表明,量子世界满足的物理规律不再是经典的牛顿力学,而是量子物理学。

建立

量子物理学是在20世纪初,物理学家们在研究微观世界(原子、分子、原子核…)的结构和运动规律的过程中,逐步建立起来的。

量子概念是1900年普朗克首先提出的,期间,经过玻尔、德布罗意、玻恩、海森柏、薛定谔、狄拉克、爱因斯坦等许多物理大师的创新努力,到20世纪30年代,初步建立了一套完整的量子力学理论。

基本特征

量子物理学创立者马克斯·普朗克

尽管量子力学是为描述远离我们的日常生活经验的抽象原子世界而创立的,但它对日常生活的影响无比巨大。没有量子力学作为工具,就不可能有化学、生物、医学以及其他每一个关键学科的引人入胜的进展。没有量子力学就没有全球经济可言,因为作为量子力学的产物的电子学革命将我们带入了计算机时代。同时,光子学的革命也将我们带入信息时代。量子物理的杰作改变了我们的世界,科学革命为这个世界带来了的福音,也带来了潜在的威胁。

独特地位:量子理论是科学史上能最精确地被实验检验的理论,是科学史上最成功的理论。量子力学深深地困扰了它的创立者,然而,直到它本质上被表述成通用形式的今天,一些科学界的精英们尽管承认它强大的威力,却仍然对它的基础和基本阐释不满意。

马克斯·普朗克(maxplanck)提出量子概念100多年了,在他关于热辐射的经典论文中,普朗克假定振动系统的总能量不能连续改变,而是以不连续的能量子形式从一个值跳到另一个值。能量子的概念太激进了,普朗克后来将它搁置下来。随后,爱因斯坦在1905年(这一年对他来说是非凡的一年)认识到光量子化的潜在意义。不过量子的观念太离奇了,后来几乎没有根本性的进展。现代量子理论的创立则是崭新的一代物理学家花了20多年时间建立的。

内容

量子物理实际上包含两个方面。一个是原子层次的物质理论:量子力学,正是它我们才能理解和操纵物质世界;另一个是量子场论,它在科学中起到一个完全不同的作用。

旧量子论

量子革命的导火线不是对物质的研究,而是辐射问题。具体的挑战是理解黑体(即某种热的物体)辐射的光谱。烤过火的人都很熟悉这样一种现象:热的物体发光,越热发出的光越明亮。光谱的范围很广,当温度升高时,光谱的峰值从红线向黄线移动,然后又向蓝线移动(这些不是我们能直接看见的)。结合热力学和电磁学的概念似乎可以对光谱的形状作出解释,不过所有的尝试均以失败告终。然而,普朗克假定振动电子辐射的光的能量是量子化的,从而得到一个表达式,与实验符合得相当完美。但是他也充分认识到,理论本身是很荒唐的,就像他后来所说的那样:“量子化只不过是一个走投无路的做法”。

普朗克将他的量子假设应用到辐射体表面振子的能量上,如果没有新秀阿尔伯特·爱因斯坦(alberteinstein),量子物理恐怕要至此结束。1905年,他毫不犹豫的断定:如果振子的能量是量子化的,那么产生光的电磁场的能量也应该是量子化的。尽管麦克斯韦理论以及一个多世纪的权威性实验都表明光具有波动性,爱因斯坦的理论还是蕴含了光的粒子性行为。随后十多年的光电效应实验显示仅当光的能量到达一些离散的量值时才能被吸收,这些能量就像是被一个个粒子携带着一样。光的波粒二象性取决于你观察问题的着眼点,这是始终贯穿于量子物理且令人头痛的实例之一,它成为接下来20年中理论上的难题。

原子

辐射难题促成了通往量子理论的第一步,物质悖论则促成了第二步。众所周知,原子包含正负两种电荷的粒子,异号电荷相互吸引。根据电磁理论,正负电荷彼此将螺旋式的靠近,辐射出光谱范围宽广的光,直到原子坍塌为止。

接着,尼尔斯·玻尔(nielsbohr)迈出了决定性的一步。1913年,玻尔提出了一个激进的假设:原子中的电子只能处于包含基态在内的定态上,电子在两个定态之间跃迁而改变它的能量,同时辐射出一定波长的光,光的波长取决于定态之间的能量差。结合已知的定律和这一离奇的假设,玻尔扫清了原子稳定性的问题。玻尔的理论充满了矛盾,但是为氢原子光谱提供了定量的描述。他认识到他的模型的成功之处和缺陷。凭借惊人的预见力,他聚集了一批物理学家创立了新的物理学。一代年轻的物理学家花了12年时间终于实现了他的梦想。

开始时,发展玻尔量子论(习惯上称为旧量子论)的尝试遭受了一次又一次的失败。接着一系列的进展完全改变了思想的进程。

发展史

1923年路易·德布罗意(llie)在他的博士论文中提出光的粒子行为与粒子的波动行为应该是对应存在的。他将粒子的波长和动量联系起来:动量越大,波长越短。这是一个引人入胜的想法,但没有人知道粒子的波动性意味着什么,也不知道它与原子结构有何联系。然而德布罗意的假设是一个重要的前奏,很多事情就要发生了。

1924年夏天,出现了又一个前奏。萨地扬德拉·n·玻色(satyendran.bose)提出了一种全新的方法来解释普朗克辐射定律。他把光看作一种无(静)质量的粒子(现称为光子)组成的气体,这种气体不遵循经典的玻耳兹曼统计规律,而遵循一种建立在粒子不可区分的性质(即全同性)上的一种新的统计理论。爱因斯坦立即将玻色的推理应用于实际的有质量的气体从而得到一种描述气体中粒子数关于能量的分布规律,即著名的玻色-爱因斯坦分布。然而,在通常情况下新老理论将预测到原子气体相同的行为。爱因斯坦在这方面再无兴趣,因此这些结果也被搁置了10多年。然而,它的关键思想——粒子的全同性,是极其重要的。

沃尔夫刚·泡利(auli)提出了不相容原理,为周期表奠定了理论基础。

韦纳·海森堡(wernerheisenberg)、马克斯·玻恩(maxborn)和帕斯库尔·约当(pas)提出了量子力学的第一个版本,矩阵力学。人们终于放弃了通过系统的方法整理可观察的光谱线来理解原子中电子的运动这一历史目标。

埃尔温·薛定谔(erwinsger)提出了量子力学的第二种形式,波动力学。在波动力学中,体系的状态用薛定谔方程的解——波函数来描述。矩阵力学和波动力学貌似矛盾,实质上是等价的。

电子被证明遵循一种新的统计规律,费米-狄拉克统计。人们进一步认识到所有的粒子要么遵循费米-狄拉克统计,要么遵循玻色-爱因斯坦统计,这两类粒子的基本属性很不相同。

海森堡阐明测不准原理。

保尔·a·m·狄拉克(paula.m.dirac)提出了相对论性的波动方程用来描述电子,解释了电子的自旋并且预测了反物质。

狄拉克提出电磁场的量子描述,建立了量子场论的基础。

玻尔提出互补原理(一个哲学原理),试图解释量子理论中一些明显的矛盾,特别是波粒二象性。

量子理论的主要创立者都是年轻人。1925年,泡利25岁,海森堡和恩里克·费米(enrii)24岁,狄拉克和约当23岁。薛定谔是一个大器晚成者,36岁。玻恩和玻尔年龄稍大一些,值得一提的是他们的贡献大多是阐释性的。爱因斯坦的反应反衬出量子力学这一智力成果深刻而激进的属性:他拒绝自己发明的导致量子理论的许多关键的观念,他关于玻色-爱因斯坦统计的论文是他对理论物理的最后一项贡献,也是对物理学的最后一项重要贡献。

创立量子力学需要新一代物理学家并不令人惊讶,开尔文爵士在祝贺玻尔1913年关于氢原子的论文的一封书信中表述了其中的原因。他说,玻尔的论文中有很多真理是他所不能理解的。开尔文认为基本的新物理学必将出自无拘无束的头脑。

20世纪物理学的发展表明,量子物理是人们认识和理解

原子

原子(3张)

微观世界的基础。量子物理和相对论的成就使得物理学从经典物理学发展到现代物理学,奠定了现代自然科学的主要基础。

当然,随着物理学和其它自然科学的进一步发展,人们认识的逐步深化,量子物理学也会进一步地丰富和发展。至今为止、量子力学的某些基本观念和哲学意义,科学家们仍然继续争论不休,这是一门科学在走向成熟过程中的一个必经的阶段。

2量子力学

编辑

量子力学是

爱因斯坦

一门奇妙的理论。它的许多基本概念、规律与方法都和经典物理的基本概念、规律和方法截然不同。

量子物理学的现象不同于我们在日常生活中所观察到的物理现象,其理论比较抽象,其数学工具比较艰深。因此人们往往将量子力学称为研究量子现象的数学,本书(量子物理)实际上可以称为量子力学初步或量子力学导论。

量子力学诠释:霍金膜上的四维量子论

类似10维或11维的“弦论”=振动的弦、震荡中的象弦一样的微小物体。

霍金膜上四维世界的量子理论的近代诠释

振动的量子(波动的量子=量子鬼波)=平动微粒子的振动;振动的微粒子;震荡中的象量子(粒子)一样的微小物体。

波动量子=量子的波动=微粒子的平动+振动

=平动+振动

=矢量和

量子鬼波的deng's诠释:微粒子(量子)平动与振动的矢量和

粒子波、量子波=粒子的震荡(平动粒子的震动)

3发展简史

编辑

独特地位

尽管量子力学是为描述远离我们的日常生活经验的抽象原子世界而创立的,但它对日常生活的影响无比巨大。没有量子力学作为工具,就不可能有化学、生物、医学以及其他每一个关键学科的引人入胜的进展。没有量子力学就没有全球经济可言,因为作为量子力学的产物的电子学革命将我们带入了计算机时代。同时,光子学的革命也将我们带入信息时代。量子物理的杰作改变了我们的世界,科学革命为这个世界带来了的福音,也带来了潜在的威胁。

或许用下面的一段资料能最好地描述这个至关重要但又难以捉摸的理论的独特地位:

量子理论是科学史上能最精确地被实验检验的理论,是科学史上最成功的理论。量子力学深深地困扰了它的创立者,然而,直到它本质上被表述成通用形式的今天,一些科学界的精英们尽管承认它强大的威力,却仍然对它的基础和基本阐释不满意。

马克斯·普朗克(maxplanck)提出量子概念100多年了,在他关于热辐射的经典论文中,普朗克假定振动系统的总能量不能连续改变,而是以不连续的能量子形式从一个值跳到另一个值。能量子的概念太激进了,普朗克后来将它搁置下来。随后,爱因斯坦在1905年(这一年对他来说是非凡的一年)认识到光量子化的潜在意义。不过量子的观念太离奇了,后来几乎没有根本性的进展。现代量子理论的创立则是崭新的一代物理学家花了20多年时间建立的。

辐射问题引入

量子革命的导火线不是对物质的研究,而是辐射问题。具体的挑战是理解黑体辐射(指入射的电磁波全部被吸收,既没有反射,也没有透射的物体)的光谱。烤过火的人都很熟悉

这样一种现象:热的物体发光,越热发出的光越明亮。光谱的范围很广,当温度升高时,光谱的峰值从红线向黄线移动,然后又向蓝线移动(在可见光范围内表现为主色调由红变蓝)。

结合热力学和电磁学的概念似乎可以对光谱的形状作出解释,不过所有的尝试均以失败告终。然而,普朗克假定振动电子辐射的光的能量是量子化的,从而得到一个表达式,与实验符合得相当完美。但是他也充分认识到,理论本身是很荒唐的,就像他后来所说的那样:“量子化只不过是一个走投无路的做法”。

普朗克将他的量子假设应用到辐射体表面振子的能量上,如果没有新秀阿尔伯特·爱因斯坦(alberteinstein),量子物理恐怕要至此结束。1905年,他毫不犹豫的断定:如果振子的能量是量子化的,那么产生光的电磁场的能量也应该是量子化的。尽管麦克斯韦理论以及一个多世纪的权威性实验都表明光具有波动性,爱因斯坦的理论还是蕴含了光的粒子性行为。随后十多年的光电效应实验显示仅当光的能量到达一些离散的量值时才能被吸收,这些能量就像是被一个个粒子携带着一样。光的波粒二象性取决于你观察问题的着眼点,这是始终贯穿于量子物理且令人头痛的实例之一,它成为接下来20年中理论上的难题。

物质悖论

辐射难题促成了通往量子理论的第一步,物质悖论则促成了第二步。众所周知,原子包含正负两种电荷的粒子,异号电荷相互吸引。根据电磁理论,正负电荷彼此将螺旋式的靠近,辐射出光谱范围宽广的光,直到原子坍塌为止。

↑返回顶部↑

书页/目录